On Counterexamples to a Conjecture of Wills and Ehrhart Polynomials whose Roots have Equal Real Parts

نویسنده

  • Matthias Henze
چکیده

As a discrete analog to Minkowski’s theorem on convex bodies, Wills conjectured that the Ehrhart coefficients of a 0-symmetric lattice polytope with exactly one interior lattice point are maximized by those of the cube of side length two. We discuss several counterexamples to this conjecture and, on the positive side, we identify a family of lattice polytopes that fulfill the claimed inequalities. This family is related to the recently introduced class of l-reflexive polytopes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counterexamples of the Conjecture on Roots of Ehrhart Polynomials

An outstanding conjecture on roots of Ehrhart polynomials says that all roots α of the Ehrhart polynomial of an integral convex polytope of dimension d satisfy −d ≤ R(α) ≤ d − 1. In this paper, we suggest some counterexamples of this conjecture.

متن کامل

Notes on the Roots of Ehrhart Polynomials

We determine lattice polytopes of smallest volume with a given number of interior lattice points. We show that the Ehrhart polynomials of those with one interior lattice point have largest roots with norm of order n , where n is the dimension. This improves on the previously best known bound n and complements a recent result of Braun [8] where it is shown that the norm of a root of a Ehrhart po...

متن کامل

Roots of Ehrhart Polynomials and Symmetric Δ-vectors

Abstract. The conjecture on roots of Ehrhart polynomials, stated by Matsui et al. [15, Conjecture 4.10], says that all roots α of the Ehrhart polynomial of a Gorenstein Fano polytope of dimension d satisfy − d 2 ≤ Re(α) ≤ d 2 − 1. In this paper, we observe the behaviors of roots of SSNN polynomials which are a wider class of the polynomials containing all the Ehrhart polynomials of Gorenstein F...

متن کامل

Roots of Ehrhart Polynomials of Gorenstein Fano Polytopes

Abstract. Given arbitrary integers k and d with 0 ≤ 2k ≤ d, we construct a Gorenstein Fano polytope P ⊂ R of dimension d such that (i) its Ehrhart polynomial i(P , n) possesses d distinct roots; (ii) i(P , n) possesses exactly 2k imaginary roots; (iii) i(P , n) possesses exactly d − 2k real roots; (iv) the real part of each of the imaginary roots is equal to −1/2; (v) all of the real roots belo...

متن کامل

Roots of Ehrhart Polynomials of Smooth Fano Polytopes

V. Golyshev conjectured that for any smooth polytope P with dim(P ) ≤ 5 the roots z ∈ C of the Ehrhart polynomial for P have real part equal to −1/2. An elementary proof is given, and in each dimension the roots are described explicitly. We also present examples which demonstrate that this result cannot be extended to dimension six.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2014